
NASA Contractor Report 201629

ICASE Report No. 96-72

6 /

ICA

DISCRETE DETERMINISTIC

AND STOCHASTIC PETRI NETS

Robert Zijal
Gianfranco Ciardo

NASA Contract No. NAS1-19480

December 1996

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001





Discrete Deterministic and Stochastic Petri Nets

Robert Zijal*

Technische Universit_it Berlin,

Institut fiir Technische Informatik,

Franklinstr. 28/29, 10587 Berlin, Germany

bob@cs.tu-berlin.de

Gianfranco Ciardo t

Department of Computer Science

College of William and Mary

Williamsburg, VA 23187-8795, USA

ciardo@cs.wm.edu

Abstract

Petri nets augmented with timing specifications gained a wide acceptance in the area of perfor-

mance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and

conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic

process, which can be shown to be Markovian under the assumption of exponentially distributed

firing times. The integration of exponentially and non-exponentially distributed timing is still one

of the major problems for the analysis and was first attacked for continuous time Petri nets at the

cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri

net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can

fire either in zero time or according to arbitrary firing times that can be represented as the time

to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed

firing times are then approximated arbitrarily well by geometric distributions. Deterministic fir-

ing times are a special case of the geometric distribution. The underlying stochastic process of a

DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by

standard techniques. A comprehensive algorithm and some state space reduction techniques for the

analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions,

which removes a major obstacle for the analysis of discrete time models.
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1 Introduction

Petri nets (PN) [13] proved to be a powerful graphical and mathematical modeling tool that allows

to describe and analyze complex systems exhibiting concurrency, synchronization, and conflicts.

The ability to model timed and probabilistic behavior is essential in the field of performance and

reliability evaluation. This need leads to various different extensions of the PN formalism, where

the class of stochastic Petri nets (SPNs) gained the widest acceptance. In SPNs, firing time delays

are specified by probability distributions associated to transitions. SPNs are often classified as

continuous or discrete time, depending on the type of firing time distributions and on the underlying

stochastic process.

Deterministic and stochastic Petri nets (DSPNs) [3] represent the most important continuous

time approach where transitions can fire either in zero time or after a constant (deterministic)

or exponentially distributed time delay. The initial definition of DSPNs imposed the structural

restriction that concurrent deterministic activities cannot be present. This problem was theoretically

solved in [10]. However, the solution is not feasible in practice because it leads to a state space

explosion when a larger number of concurrent deterministic activities is to be considered.

Discrete time stochastic Petri nets [12] belong instead to the discrete approach, where transition

firing times are specified by geometric distributions which approximate the exponential distribution

arbitrarily well in discrete time. Other approaches having an underlying discrete time stochastic

process have been presented in [15] (Timed Petri nets) and in [11] (Generalized Timed Petri nets),

but they does not achieve the modeling power of DSPNs.

The mixture of deterministic and stochastic firing times still imposes severe problems on the

quantitative analysis of a time-extended PN, since the state space needs to be generated and mapped

onto the basic underlying stochastic process. Our work attacks this problem by adopting a pure

discrete-time approach. However, conflicts and confusions among transition firings are more likely

to occur in discrete than in continuous time, since transitions are allowed to fire only at certain

discrete instants of time. Thus, simultaneous firing attempts of all transitions, including the timed

transitions, can take place. The detection of the sets of transitions involved in conflicts and con-

fusions is a precondition for the correct specification of probabilistic firing weights resolving these

situations. This is an important and oftenly neglected issue especially for discrete time models.

In [14], Discrete time Deterministic and Stochastic Petri nets (dtDSPNs) were introduced where

transitions fire either in zero time or after a constant or geometrically distributed time delay without

any structural restriction. The deterministic time delay is then modeled as a special case of the

geometric distribution. In dtDSPNs, the problem of conflicts and confusions is relaxed to a certain

degree by an unconventional approach. The sequentialization of simultaneously fireable timed tran-



sitions is not enforced, which leads to the elimination of confusion situations for timed transitions.

The drawback of this approach is that a dtDSPN model can generate states which are not covered

by the classical Petri net theory.

A more general approach was proposed in [5] with Discrete Time Markovian SPNs (DTMSPNs),

where firing time distributions are specified by arbitrary finite absorbing DTMCs. It has been proven

in [5] that the underlying stochastic process of a DTMSPN is a DTMC, provided that the modeler

detects and resolves all conflicts and confusions manually, possibly a very difficult task. This

drawback lead in [8] to the development of a new method for the automatic detection of conflicts

and confusions applicable to all types of stochastic Petri nets. This approach is independent of

structural PN properties and is solely based on the state space generation of a given model, so

that only actually occurring conflicts and confusions are detected. This is is not the case for

the structural tests employed in continuous time approaches, which are based on necessary, not

sufficient, conditions. Thus, structural tests can lead to an overspecification of a given model

resulting in a more difficult correct interpretation of obtained results measures.

The work presented in this paper combines the results of [14], [5], and [8], while removing the

mentioned drawbacks of [14] and [5]. We define discrete deterministic and stochastic Petri nets

(DDSPNs). In DDSPNs, transitions can fire either in zero time or after a time delay specified by

arbitrary finite absorbing DTMCs without any structural restriction. Firing time distributions of

a DDSPN include the geometric and the deterministic distribution as a special case. Any other

discrete distribution that can be expressed by a finite absorbing DTMC can be freely defined, such

as the discrete uniform distribution. We adapt the general approach for the automatic detection

of conflicts and confusions from [8] and integrate it into the solution method for the analysis of

DDSPNs. Together with the solution method, a new algorithm for the complex and non-trivial state-

space generation is presented, mapping a DDSPN onto a DTMC, from which again the transient

and stationary solution can be obtained by standard techniques. Finally, some state space reduction

techniques for DDSPNs are proposed to relax the inherent problem of state space explosion.

Section 2 defines untimed PNs. Section 3 introduces the discrete firing time distributions of

DDSPN transitions. Sections 4 and 5 present the complete DDSPN formalism itself and the cor-

responding state space reduction methods. Numerical results are shown in Section 6, followed by

concluding remarks in Section 7.
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2 The PN Formalism

We recall the (extended) PN formalism used in [8]. See also [4] for more details on PNs with

marking-dependent arc multiplicities. A PN is a tuple (P, T, D-, D +, D °, _,g,/_[01) where:

• P is a finite set of places, which can contain tokens. A marking # E IN IPI defines the number

of tokens in each place p E P, indicated by #v (when relevant, a marking should be considered

a column vector). D-, D +, D °, and g are "marking-dependent", that is, they are specified as

functions of the marking.

• T is a finite set of transitions. P n T = 0.

• Vp E P, Vt E T, V# E IN IPI, D_,t(#) E IN, D+t(#) E IN, and D_,t(t.t ) E IN are the multiplicities

of the input arc from p to t, the output arc from t to p, and the inhibitor arc from p to t, when

the marking is #, respectively.

• _ _C T × T is an acyclic (pre-selection) priority relation.

• Vt E T,V# E INIPI,gt(/_) E {0,1} is the guard for t in marking g.

• /z [°] C IN IP[ is the initial marking.

Places and transitions are drawn as circles and rectangles, respectively. The number of tokens in

a place is written inside the place itself (default is zero). Input and output arcs have an arrowhead

on their destination, inhibitor arcs have a small circle. The multiplicity is written on the arc (default

is the constant 1); a missing arc indicates that the multiplicity is the constant 0. The default value

for guards is the constant 1.

Let C(/z) be the set of transitions enabled in marking #. A transition t E T is enabled in marking

# if, and only if, its guard evaluates to 1, its input and inhibitor arc conditions are satisfied, and

no other transition with pre-selection priority over t is enabled (this is well defined because >-- is

acyclic):

(gt(#) = 1) A (VpE P,D_,t(tt ) < _pA (D;,t(#) > #p V D;,t(tt ) =0)) A(Vu E E(#),u _ t).

A transition t E E(/_) can fire, causing a change to marking A4(t, #), obtained from # by

subtracting the input bag D:,t(#) and adding the output bag D+t(_t) to it:

M(t,#) = #- D;t(# ) + D+t(#) = # + Do,t(/_),



where D -- D + - D- is the incidence matrix..M can be extended to its reflexive and transitive

closure by considering the marking reached from # after firing a sequence of transitions. The

reachability set is then given by

s = 3o e T*^ =

where T* indicates the set of transition sequences. The reachability graph is (S, A), where A contains

t tan arc #--,# iff# E S, t E T, and #' = M(t,#).

3 Discrete Time Phase Distributions

Firing times of transitions in DDSPNs are modeled by discrete time phase distributions (DTPs).

Definition 3.1 A DTP is represented by a finite absorbing discrete time Markov chain

(DTMC) {Xizli E IN} where

• 5 > 0 is the underlying constant time-step.

• X_z E I = {n,n - 1, ...,0}, the finite state space of the DTMC. Each state corre-

sponds to a possible distribution of the remaining firing time (RFT) for a transition.

• Vk E I, Pr{X0 = k} is the initial probability distribution, such that _kel Pr{X0 =

k} = 1.

States I \ {0} are transient. State 0 is absorbing and represents the case that a phase

reached zero and that the corresponding transition is allowed to fire. E]

Two additional symbolic DTP states, whose sojourn times are zero, b and •, are introduced.

The symbolic state b (for begin) represents the initial probability distribution of a DTP. Since DTPs

will be used for modeling RFTs of transitions, a second symbolic state • is needed to represent

unambiguously the case when a transition is disabled and no definite phase is specified.

Special cases of a DTP are for instance the geometric, constant, and the uniform distribution.

In the following we will show how these discrete distributions can be represented by DTPs. From

now on, the states of I will be referred to as phases, to make a clear distinction between DTP states

and the overall state space of a DDSPN.

Geometric Distribution

The geometric distribution, Geom(a,w) with probability a E (0, 1), approximates the exponential

distribution in discrete time arbitrarily well as its unit-step w > 0 decreases. The probability mass



function (pmf), cumulative probability distribution function (CDF), and expectation of a random

variable X ,,_ Geom(a, w) are then given by

• pmf:
a(1-a) i-1 ifiElN + , where IN+={1,2,3,...},px (iw) = 0 otherwise.

• CDF:
1-(1-a)[_J if x>0,Fx(x) = 0 otherwise.

• mean: _ (average delay)

px(

0.5

i_) _X'(x)

1]
0.5 --

_ ' =iw : : : =x

w 2w 3w 4w 0 w 2w 3w 4w

pmf PDF

Figure 1: X ,,_ Geom(0.5,w).

Fig. 1 shows the pmf and CDF of X ,-_ Geom(0.5,w). The DTP representation of Geom(a,w)

depends on its unit-step w, defined as an arbitrary non-negative integer multiple, w = c8, c 6 IN+, of

the constant basic underlying time-step 8 > 0 of all DTPs. For example, two geometric distributions,

Geom(1/5, 8) and Geom(4/5, 48), have different DTPs but the same mean value of 58. Fig. 2 shows

the DTP representations of X --_ Geom(a, 8) and X --_ Geom(a,48). The states of a DTP (or

phases) are represented by nodes and the probabilistic state transitions by labeled arcs.

Ceom(a,45)

Figure 2: DTP representations of geometric distributions.

Constant Distribution

The constant distribution, Const(w) with w > 0, can be seen as a special case of the geometric

distribution, where a = 1, so Const(w) = Geom(1,w). The pmf and CDF (Fig. 3) of a random

variable X ,-_ Const(w) are then given by



• pmf:

• CDF:

= {

Fx(x) = { 01

1 ifi= 1,

0 otherwise.

if x < w,

otherwise.

px (i_)

'l
0

l"x(z)

I_ iW I It ,. x

_." 2w 0 _

pmf I'DF

Figure 3: X _ Const(w).

Immediate transitions (firing in zero time) can be modeled by a special case of the constant

distribution where X _ Const(0). Fig. 4 shows the DTP representations of X ,_ Const(0) and

X ,-_ Const(45).

Coast(46)

Figure 4: DTP representations of constant distributions.

Discrete Uniform Distribution

Like the geometric distribution, the discrete uniform distribution, Unif(a, b, w) where a, b E IN, a <

b, and w is a multiple of 5. The pmf, CDF, and expectation of a random variable X _-- Unif(a, b, w)

are then given by

(b -- a + l) -1
• pmf:

• CDF:

px(i_) =

Fx(z)={ [_J-a+l)(b-a+l) -1

(average delay)• mean: w 2

if/E {a,a+ 1,...,b},

otherwise.

if x < aw,

if aw <_ x < b_,

ifx > b_.

Fig. 5 shows for example the pmf and CDF of X _ Unif(2, 5, w) and Fig. 6 the DTP represen-

tations of different uniform distribution examples.
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Figure 5: X ,,_ Unif(2, 5, w).

Uaif(0,2,6) :

Unif(l,3,$) :

•

Uaif(l, 3, 2$) :

_1/3_

Unif(2, 5, 6) :

Figure 6: DTP representations of uniform distributions.

4 The DDSPN Formalism

Basic definitions of the DDSPN formalism and the specification of race policies are explained in

Sections 4.1 and 4.2, respectively. Sections 4.3 and 4.4 examine the DDSPN state space and

introduce the concept of well-defined DDSPNs, which is needed for the correct generation of the

underlying stochastic process of a DDSPN model. Finally, Section 4.5 proposes an algorithm for

the reduced reachability graph generation of a well-defined DDSPN from which the underlying

stochastic process can be derived and numerically analyzed.

4.1 Basic Definitions

Informally, a DDSPN is obtained by associating a discrete time random delay, a DTP, to each PN

transition. A state s of a DDSPN consists of two discrete components, the marking # and the



vector ¢ containing the phase for each transition:

s = (#, ¢) E 1NIvl x INITI.

Each entry Ct of ¢ represents the current phase of the DTP associated to transition t.

Formally, a DDSPN is a tuple

(P, T, D-, D + , D ° , _-, g,/_[0], ¢[o], ¢, G, F, ¢[0], _, C, w)

Definition 4.1

where:

p, D +, #[0]) defines extended PN introduced in Section 2.T, D-, D ° , _-, g, an a_

Vt E T, ¢t C IN is the finite set of phases of the DTP associated to transition t.

V# E S, Vt E T, Vi,j E Ct, Gt(#,i,j) is the probability that the phase of transi-

tion t changes from i to j in marking # at the end of one time-step _. Hence,

_je¢, Gt(',i,j) = 1. Gt specifies the one-step transition probability matrix of the

DTP of an enabled transition t in isolation. The phase of a disabled transition does

not change in isolation: Gt(#,i,i) = 1 if t _ g(#).

All combinations of possible new phases for all enabled transitions must be con-

sidered when ¢ is changed at the end of a step of length _. This leads to the

construction of the set G(p, ¢), such that V¢' E G(#, ¢), ¢' is a possible combina-

tion of phases for all transitions:

0(/_,¢) = X,eTCt c where Cta = U {¢'t}.
41:c,(,,¢,,4_)>0

v# E S, Vt E E(p),Vu E T, Vi,j E _,,, Ft,_(l_,i,j) is the probability that the phase

of transition u changes from i to j when transition t fires in marking #.

F is used for the specification of race policies (see Section 4.2) for transitions.

Again, all combinations of possible new phases for all transitions need to be con-

sidered when ¢ is changed by the firing of t in/_ leading to the construction of the

set _'(t, #, ¢), such that re' E _'(t, #, ¢), ¢' is a possible combination of phases for

all transitions:

5r(t,#,¢)= X_eT¢ F where CF= U {¢'_}"
¢'_:F,,_(_,¢_,¢')>0

* Vt E T, ¢_o1 E Ct is the initial phase of transition t at time 0.

* _C T x T is an acyclic post-selection priority relation.



• C C 2 T is a partition of T into locally defined weight classes: VC=, Cy E C, C=

Cy=_C= M Cy = 0 and Uc=ec C= = T. Let C_ be the local weight class containing

transition t E T. By setting C_ = T, we can model a global weight definition as in

[5].

• V# E S, Vt E E(#),VS C_ Ct O E(#),Wtls(#) E IR + is the firing weight for t in

marking # when S is the set of candidates to fire in the same weight class as t. See

the following description for the definition of a candidate.

[]

In a DDSPN, a transition may only fire in a state where it is a candidate. For this reason, the

enabling rule of Section 2 needs to be extended by the following definition.

Definition 4.2 A transition t E T is a candidate (to fire) in state s = (#,¢) iff it is

enabled, its phase is zero, and no other candidate has post-selection priority over it (this

is well defined because _ is acyclic):

1. t E A

2. Ct=0 A

3. Vu E T, u _- t V u is not a candidate in s.

[]

Moreover, the firing rule of Section 2 is extended from markings to states for DDSPNs. Let C(s)

be the set of candidates in state s = (#, ¢). Then, the probability that transition t E C(s) is chosen

to fire, given that one of the transitions in its weight class Ct fires, is

wtlc(_)nc,(_)

,,ec(s)nct

Note, that in DDSPNs firing probabilities are only defined among transitions belonging to the same

weight class.

4.2 Race Policies

A candidate transition t E C(s) may fire in a state s = (#,¢) leading to the new marking/_' =

M(t,#). Dynamic race policies [1] can be then expressed for a transition u E T, where u ¢ t,

according to Ft,_(#, ",'). This means that, depending on which transition t fired, one of the following



three race policies is applied to u which may cause its phase ¢4 E _4 to (re)sample a random deviate

¢" E _ from the distribution Ft,4(#_.,-):

R-R, race with resampling:

The phase of u is always resampled

{ a.(,,b,¢')
• ¢4, &,,(,, ¢4, = 1

0

if u E £(/_'),

if u ¢_ £(/_') A ¢" = ,,

otherwise.

The resampling policy is always used when u = t or when ¢_ = .. In all other cases, it can still be

used, or one of the following two policies can be used instead.

R-A, race with age memory:

The phase of u is not changed by the firing of t

1 if qS' = ¢4,re" C _4, Ft,_,(#, ¢_, ¢') = 0 otherwise.

R-E, race with enabling memory:.

The phase of u is only resampled if u becomes disabled by the firing of t

1 if u e £(#') A ¢'_ = ¢_,

1 ifu_£(#')A¢'_=.,

0 otherwise.

The approach just described allows different race policies to be applied to a transition u E T

depending on which transition t C T fires. Thus, it extends the modeling power by generalizing the

definition of [1], where a transition may have only a single race policy for all transition firings.

4.3 The DDSPN State Space

The underlying stochastic process of a DDSPN is a DTMC {(#N,¢N)Ik E IN} with state space

S __C IN IPI × IN ITI. The time-step of the DTMC is given by 8, such that (#N,¢N) E S is a DDSPN

state at step k at time kS.

We adopt the terminology of [2] and call a state s tangible if its sojourn time is greater than

zero, C(s) = 0, vanishing otherwise. Consequently, S consists only of tangible states.

Consider a tangible state sN = (#N, CN) at time step k. At the next time step k + 1, the new

tangible state s [k+l] is obtained by first advancing the phases of all enabled transitions in CN, then
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by subsequently traversing vanishing states created by the possible firing of a sequence of one or

more candidate transitions. A more detailed definition of a state at time step k + 1 is then given

by the following:

• Let the new tangible state reached after any firings occurring at time step k + 1 be s [k+l].

• Let s [k+l]° = (ff[k+l]0, ¢[k+1]o) denote the first state reached from s [k] where

- no firing occurred: #[k+l]o __/_[k] and

- the time is advanced: ¢[k+1]0 E G(#[k], eN).

• Let s [k+l]i = (#[k+l]i, ¢[k+l]i), i E {1, 2, ..., n} denote the i-th state entered after the firing of a

transition t i E C(s[k+l]i-1), such that

- t i fires: #[k+l]i = M(ti,#[k+l]i-1) and

- the race policies are applied: ¢[k+l]i E 5r(t i,/_[k+l]i-1, ¢[k+1]i-1).

After n possible firings in n vanishing states s [k+l]i, i = 0, ..., n-1, we define the first reachable

tangible state to be s [k+l] de___=fS[k+l]_. Note that s [k+l]° = s [k+l] if C(s [k+l]°) = 0, that is, if no

firing occurs.

The previous definition describes a single state sequence s* = (s[k+_]ili E {0, 1, ..., n}) of states

leading from s N to s [k+l]. For better readability, let s [k] = s and s [k+l] = _. Then, the set Ss,_ of all

state sequences from s = (if, ¢) to all possible _ = (/5, (_) is given by

s,, = = = I
v_° e _(,, ¢), _o= (,, $o),

vi e {1,2,...,_}, w' e c(_'-'), v$i e _(t',_'-',$'-l), _,= (M(_',_'-'), _')}.

The probability of a single state sequence s* E S_._ is then given by
n

Pr{s*ts* e E;,,, A _ e s*} = g. lI (fi . Fi) where
i=1

g I_tET Gt(#, -o= ¢,,¢,)
is the probability for a single combination of phases _o E G(#, ¢) and where for a transition t _ E

C(_i-1), such that/5i= .M(ti,/_ i-1)

fi = CVtilC(_i_,)nc,, (/),i-l)

is the firing probability and

_ i [ xi-1 ~

is the probability for a single combination of q_i E .T(t', _i--1, (_i--1). Fig. 7 shows a possible sequence

of states leading from s to g and the involved probabilities.

11



r_

! ..°

Vi E {1,..., n} fi F_ " ' "'"

n

firings in
zero-time

Figure 7: A sequence of states s* leading from s = s [kl to ._ = s [k+l].

4.4 Well-defined DDSPNs

The underlying stochastic process of a DDSPN introduced in Section 4.3 takes only the tangible

state space and the sojourn time in a particular state into consideration. However, for the analysis

of a DDSPN, a more detailed process is needed, extending the definition of Section 4.3, to take into

account the firing of transition sequences leading from one tangible state to another.

Definition 4.3 The underlying stochastic process for a DDSPN, or basic process, is

{(atk],s[k])]k E IN}, where, for k > 0, a [k] = (tl,...,t _) E T* is the k-th sequence of

n E IN transitions to fire, at time kS, beginning from state s [kl° and reaching state

s [k]'_ = s [k], such that s[kl'-lZ, s [k]' for i = 1,..,n. (a [°] = NULL and s [k]° is obtained

from s [k-1] by advancing the time from (k - 1)_ to kS). []

Informally, conflicts and confusions can arise in the context of contemporary firing attempts

of PN transitions, which need to be sequentialized, and where different sequences of (formerly

contemporary) transition firings lead to different undefined stochastic outcomes. A DDSPN is free

of conflicts and confusions if it is well-defined, a precondition for its analysis. The general approach

of well-defined SPNs has been first introduced in [8] and we now adapt it to give a formal definition

of well-defined DDSPNs:

Definition 4.4

is, if

A DDSPN is well-defined if its basic process is completely defined, that

Vk E IN, V_r E T*, Vs C S, Pr{_r [k] = a, s [k] = s}

is completely determined by the elements of the DDSPN. 1:3

In practice, we are normally interested in stochastic reward processes derived from the basic

process. Without going into too much detail (see [7] for a discussion of the use of reward rates and

impulses to define measures of interest), we give the following:

12



Definition 4.5 A stochasticprocess{y[k] C IR [ k E IN+} is a reward process derived

from the basic process through the reward structure (p, r) if it is defined as:

y[k] : 0<j<k_ ( p(#_-1]) " 8 + y_ rt'(#[j]'-l))¢e_t,l

where the reward rates p : IN IPI --+ ]R describe the rate at which reward is accumulated

in a particular marking and the reward impulses r : (T x IN IPI) --+ ]R describe the impulse

accumulated when a particular transition is fired in a particular marking. 13

It is then possible for the reward process to be well-defined, even when the basic process is not.

Hence we need a further:

Definition 4.6 A DDSPN is well-defined with respect to a reward structure (p, r) if

pr{y[kl = y}

is completely determined by the elements of the DDSPN, where {y[k] E ]R I k E IN +} is

the reward process defined by applying the reward structure (p, r) to the basic process

of the DDSPN. []

Corollary 4.1

ture. []

A well-defined DDSPN is well-defined with respect to any reward struc-

The concept of well-defined SPNs and the corresponding test algorithm have been extensively

discussed in [8] where more details and examples can be found.

4.5 Reduced Reachability Graph Generation

In this section we will propose an algorithm for the construction of the (finite) reduced reachability

graph (RRG) and for the calculation of the impulse rewards of a well-defined DDSPN. The algorithm

also tests whether the DDSPN is well-defined. The overhead for this test is small, because it is

based on the state space of the RRG and on the impulse reward measures. Rate rewards are not

affected by conflicts and confusions, since they are calculated before any transition firing occurs.

Therefore, the calculation of rate rewards is omitted, for the sake of better readability, but it can

be easily included into the algorithm. Formally, the algorithm is given:

• a DDSPN (P,T,D-,D+,D°,_-,g,#[°I,¢i°I,¢,G,F,¢[°I,_,C,w_, and
k /
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• a set of impulse reward functions M = {r 1, ..., rlMI},

where r_'(#) E IR is the impulse reward obtained when firing transition t in marking #

according to the m-th reward structure, 1 < m < IM[.

If the DDSPN is well-defined, the algorithm computes the underlying tangible state space S

and all state transitions T's = Uses 7_s, such that a single path set "Ps contains the zero-time state

transitions starting from state s. Hence, given that a tangible state g is reachable from a state s,

there is a tuple (7_, r/_) E T'_ containing the corresponding state transition probability r/_ E (0, 1] and

a vector 7_ = (7_, ..., V_MI) E IR IMI, which stores the accumulated reward value 7_', for every impulse

reward function r m E M. A single tuple (-)'_, r/_) E T_, also represents the aggregated individual

probabilities and accumulated impulse rewards of possible multiple paths along vanishing states

leading from s to g.

The nonzero entries of the one-step transition probability matrix P for the underlying DTMC

of a DDSPN are then given by: Vs, g E S, V79, E 7)s,V(V_, rl_) E "P, : Ps,_ = rl_. If the expected

accumulated impulse rewards up to time kS, ElY [k] ] s [k] = s] are known, the expected accumulated

impulses up to time (k + 1)_ are given by Vk E ]N, Vs,_ E S,V'P_ E 7:'s :

E[Ytk+all(stk] = s A s[k+ll = 5)] = E[Ytkl I stk] = s] + [ if E
t 0 otherwise.

Standard numerical methods (power method, SOR) can be employed for the transient or stationary

solution of the processes of interest.

If the DDSPN is not well-defined, the algorithm issues an error message and needs to be restarted

after a conflict or confusion situation has been resolved by the means of priority or weight definitions.

See [8] for a more detailed discussion of non-well-defined DDSPNs and their implications.

Briefly, the algorithm consists of the procedure "generateRRG" in Fig. 8, where the time is

advanced in a given tangible state s [k] = s leading to $[k+l]0 = gO, and of the procedure "traverse"

in Fig. 10, where subsequent vanishing states are recursively traversed starting from s [k+l]° = go

until tangible states s [I'+1] = g are reached. Three types of parameters exist: call by value (in), call

by reference (out), and call by value-reference (inout).

The algorithm is exercised with the call "generateRRG(S, 7_s) ". The set S _xt contains the

tangible states which have not yet been visited. It is assumed that the initial state to be visited

(#[0], ¢[0]) is tangible. In case of a vanishing initial state v, only the initialization of the algorithm

needs to be slightly adjusted by

• first generating the set .q_,_t__, the initial tangible states reachable from v, and then

14



• by storing the state transition probabilities of reaching S___xt from v as the initial sojourn

probabilities in the underlying stochastic process (a DTMC) of the DDSPN.

The initial probabilities are only relevant if a subsequent transient analysis of the DTMC is going

to be performed. For the stationary analysis of the (ergodic) DTMC, it is sufficient to calculate the

first reachable tangible state as the initial state; no initial probabilities are then needed.

procedure generateRRG( out: S, _s )

s = O; _s = O;

S_,_xt : (_[01,¢[01);

while S '_'_t :# {3 do

choose a state s = (#, ¢) from S "_t',

s _' = s _' \ {s};

7_s : 0;

foreach $0 6 G(#, ¢) do

_o= (,, $0);

g = rI,_TG,(,, ¢,, _o);

if C(a °) = 0 then # ._0 IS TANGIBLE

if ._0 _ S then

s = s u {_0}; s=_, = s_=, u {_0};

_o = {(_0,g) I "y-= 0};
else # s-° Is VANISHINC

traverse(_°; S, S_t; _,-0);

,,o = U(_,,,)_,_o{('r_.g,,7_,g)};
7:'_ = uni fy-(P,, -po);

7:'s = _s u 7_s;

end procedure

Figure 8: Generation of the reduced reachability graph.

Fig. 9 outlines the execution of "generateRRG". The while-loop of the procedure visits all states

of S '_*_t and calculates the set of paths _,, accumulated for every iteration in T's, for each state

s 6 S '_*_t. The for-loop advances the time for one step 6 by generating, with every iteration, the new

state _0 depending on its possible combination of next phases _0 6 G(/2, ¢) with its corresponding

probability g. Moreover, for every ._o, it generates the set of paths _o leading from s to tangible
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states via go and unifies them afterwards in the path set 798 covering all existing state transitions

originating in s. Hence, if go is tangible, it is added to the sets of tangible states S and S ''_t, if not

already there, and a single initial direct path 790 to go with probability g is created with no impulse

rewards, since no transition firing lead to go. If g0 is vanishing, the call "traverse(g°; S, S"¢*t; 79_)"

computes the path set 79_ from which 790 is afterwards obtained by multiplying all impulse rewards

and path probabilities of 79_0 with the probability g of reaching g0 from s.

S _

s = s [k] I ""

i IC"P_ "traverse()
T

_-'-"" g=s[k+l] ] "'_S

Figure 9: Execution of "generateRRG".

The function unify-(798, 79_) unifies two different path sets 79s and 79", whose origin lies in the

same state s, so that multiple paths reaching the same tangible state g are merged, guaranteeing

that V(7_, r/_), (7_', r/_,) E 798, g = g'=_(7_, r/_) = (7_', r/_,). Therefore, the intersection 79_ is first

constructed where paths of both sets (7_, r/_) E 79, and (7",r/') E 79' going to the same g are

aggregated by summing the corresponding accumulated impulse rewards and path probabilities:

7:,?= U {(7_+ "/, ,7_+ _')}

Then, all paths of 79, and 79: going to different tangible states are unified together with the inter-

section T'_,n into the set 79su:

79Y= U {("r,,,7,)} u 797

which is also the value returned by the function.

Fig. 11 outlines the execution of "traverse". The first for-loop of the procedure in Fig. 10

partitions all candidate transitions of gi-1 into sets of candidate transitions C, belonging to the

same weight class C,. The second for-loop fires all transitions of a particular set C,, so that, with

every iteration, a single candidate transition t i E C_ is fired in marking/5 i-1 according to its firing
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procedure traverse( in: g,-1 = (_/-1,(_i-1);

7)_,-, = 0;

foreach C_ e C do

: n
foreach t _ E C= do

+ ~i-1 .
f_ = [z_-1 _ D_t,(_'-' ) + Do,t,(# ),

fi = tb,,l¢" (fii-1);

foreach _i E *_'(*i, f2i-l,_i--1) do

= F, ,-i-: ,_-i ,_i_.Fi [I,,eT t,_,[# ,,,-_, , ,_,_,,

inout:

# FIRE SINGLE CANDIDATE

S, S'_*_:t; out: 7)_,-1 )

APPLY RACE POLICIES

if C(_ _) = O then # _i IS TANGIBLE

if _ _ S then

7_,-_ = { (7_, fiF,) [Vm C {1,..., IMI), 7_ TM = r_?(P'-_)f 'F'} ;

else # _i IS VANISHtNG

traverse(_i; S, S'_*_t; 7_);

P],-, = U(_,,n,)ev,, {(7;,rl_f iFi) lyre _ {1,...,IMI},

7_"_ = (7? + r_, ([ti-1)rl_)f iFi} ;

7_, = uni fy-(7_'_,, 7)_,_1);

if P_,-_ = 0 then P_,-_ = P__, ;

else if P_,-t # 7)_c,___then stop; # ERROR, DDSPN NOT WELL-DEFINED

end procedure

Figure 10: Traversing recursively vanishing states.

probability f_ leading to/5 i. For each firing transition t i the third for-loop applies the corresponding

race policies to all phases of (_i-1 and generates, with every iteration, the new state ._i = (/_i _)

with probability F _ depending on the possible combination of next phases (_ E _(tl, fti-i,_i-i).

Analogously to the for-loop of "generateRRG", it first generates the set of paths 7_,__ leading from

_-1 to tangible states via ._i, for every ._, and then it unifies them in the path set T'___ covering

all existing state transitions initiated by firing transitions of _'_ in gi-t. Again, if ._i is tangible

(terminating recursive calls), it is added to the sets of tangible states $ and $=e_t, if not already

there. Moreover, a single initial direct path 7)_,__ with probability f'F _ (Pr{/5;}Pr{(_}) for reaching

the tangible ._i is created together with instantaneous impulse rewards gained by the firing of t i in
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/5 i-1 leading to gi. If gi is vanishing, the subsequently reachable states are explored by the recursive

call "traverse(gi; S, S'_":t; 3Pr) " which computes the path set T_, (assuming that the vanishing

reachability graph created from gi is acyclic, finite, and that no conflict or confusion occurred).

T'_._I is then obtained from T'_, by adding the instantaneous impulse rewards of t i to T'_,, so that

the probability of a particular path and of the accumulated impulse rewards equals to r/" = fiFirl_

for reaching a tangible state g from g_-i via ._i.

"_i--I
• i

o°°

_i-1 = 8[k+l]i-I )

= s[k+lli ) ... _s,-,
I

_traverse()

I g = s[k+ll ""--_,S

Figure 11: Execution of "traverse".

Conflicts and confusions exhibit a non-deterministic behavior which can occur in DDSPNs only

in a vanishing state gi-1 when multiple candidate transitions t E C(g i-l) attempt to fire in zero-

time leading to tangible states g with different stochastic outcomes. Indeed, the DDSPN evolution

during instants of time where there is no firing is completely determined by the assumption of a

race behavior.

It is possible to resolve conflicts and confusions by employing one of the following two methods.

Priorities can be defined to prevent conflicting transitions from becoming simultaneous candidates,

hence from attempting to fire at the same time. The second method groups candidate transi-

tions involved in conflicts or confusions into the same weight class C=, so that contemporary firing

attempts are resolved probabilistically by the individual firing probability fi for each candidate

t i E C, where _t.ed_ fi = 1. Then, candidate transitions belonging to different weight classes are

free of conflicts and confusions, and they reach from all vanishing states gi-1 the same tangible

states with the same probabilities and with the same accumulated impulse rewards, regardless of

the order in which they are fired (a necessary condition for the absence of conflicts and confusions),

such that VC_ E C : 7__1 = 7_s,-_.

If a vanishing state is encountered with at least two different paths sets where :P___ _ 79___,

the DDSPN is not well-defined with regard to the particular reward processes of interest. The
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modelermust then apply oneof the following actionsto transitions of C, and Cy before restarting

the algorithm, to remove conflicts or confusions:

• Specify pre-selection priorities disabling a conflicting transition before the advance of time.

• Specify post-selection priorities, thus forcing a particular sequence for contemporary firing

attempts.

• Merge the corresponding weight-classes of conflicting transitions and define appropriate weights

for them.

5 State Space Reduction

In Section 4.5, it has been shown how the one-step transition probability matrix P of the underlying

(finite) DTMC of a DDSPN is computed. In case of an irreducible DTMC, the stationary solution is

obtained by solving the following system of linear equations with standard techniques (Gauss-Seidel,

SOR): 7r = lrP and _ _ri = 1.

Since P is usually a sparse matrix, sparse storage schemes should be employed. Measures of

interest are then derived from the stationary probability distribution vector 7r.

A considerable reduction of the state space can be achieved if it is possible to advance the phases

of enabled transitions during the state space generation for more than just one time-step 8 until

a probabilistic split or a phase equal to zero (vanishing state) is reached. This is the case when

tangible states are encountered where the DTPs of the enabled transitions have a unit-step w which

is a multiple of the basic underlying time-step 8, a condition often met by deterministic transitions.

Hence, the algorithm for the RRG generation is slightly modified to test whether the next maximum

x phase advancements of all enabled transitions of a tangible state of S,_,t have probabilities equal

to one. Consider a tangible state s [k] = (#[k] ¢[k]) at time kS from which the following sequence of

states is initiated

s" = (sEk+ ]= ( Ckl,¢tk+,])l i • {1,2,...,x},x > 1),

so that:

3x • IN+,Vi • {1, 2, ..., x} : Pr {s [k+'] = (/_[k], ¢[k+_]) Slk+,-1] _. (/_[k], ¢[k+,-1])} _-- 1 AC(s [k+'-l]) = O.

Since no change of marking and no transition firing occurred, the states of s* were generated solely

by phase advancements of enabled transitions whose phase transition probabilities equal to one,

hence,

. ,_[a+i-1] elk+;]) = 1Vs[k+_l = (_[kl, ¢[k+_]) • s ,Vt • £(s [k+_-l]) : G_(_[kl, _., ,
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Therefore,it becomespossibleto advancedirectly from s [k] to s [k+*] leaving out the intermediate

tangible states {s[k+d[i E {1,2, ..., x- 1}} while adding their individual holding times of h,tk+,_ =

to the holding time of s [k], so that hstk J = xS. If the last state of the sequence is vanishing, s [k+_]°

is reached instead of s [k+x].

The underlying stochastic process is then a discrete time semi-Markov process where P describes

an embedded DTMC. The holding times in each state are no longer equal to _, but are given by the

holding time vector h. The stationary solution can be obtained employing the following well-known

method for semi-Markov processes [9]: We first solve the system of linear equations 7 = 7 P and

_ 7i = 1 for the embedded stationary probabilities _'; then, we rescale 7 using the holding times,

Vs E S : 7_ = 7, " hs; finally, we normalize the rescaled probabilities 7 _ and obtain the stationary
.yt

probability distribution: rr = _ .

In general the size of the state space depends on the size of the basic underlying time-step

and on the number of phases of firing time distributions (DTPs) specified for the timed transitions

of a DDSPN model. If embedding is used, the size of the state space depends, in addition, on the

maximum possible phase advancements of all enabled transitions in tangible states.

6 Example

This section illustrates the modeling power of DDSPNs by presenting an example containing several

deterministically timed activities. Consider the processing station of an automated manufacturing

system where raw parts arrive at constant time intervals. A machine tool processes each raw part

for a constant time period. The tool wears off and needs to be replaced after a stochastically timed

delay whose value depends on the tool quality and on the material of the processed parts. The

time delay for the replacement is constant. The processing station can be then characterized by a

D/D/1/K queueing system where the service station (tool) is subject to stochastic failures (wearout)

and deterministically timed repairs (tool replacement). Fig. 12 shows the corresponding DDSPN

model. Raw parts, represented by tokens, arrive with the firing of the deterministic transition

arriving and wait for service on place WAIT until the service station is empty and operable. A

single token on place IDLE SERVER and the immediate transition enter service permit only one part

at a time to enter the service station which consists of the place SERVICE and of the deterministic

transition serve. The firing of serve stands for the completion of the processing of a single part.

The failure and repair of the service station are represented by the geometric and deterministic

transitions failure and repair, respectively.

We consider a system with I_" = 50 parts, a constant deterministic arrival rate of 1 and aY67_,
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Figure 12: D/D/1/K queueing system with failure and repair.

1
constant deterministic repair rate of 1-'6-_" The deterministic service rate is varied from 1 to _ and

1 1 The basic underlying time-step of the modelthe geometric failure rate is varied from _ to i-6_"

equals to Is.

The measure of interest of the stationary solution is the average number of waiting raw parts

E{#WAIT} on place WAlT depending on the varying service and failure rates. The goal of our

performance evaluation is to determine which minimum performance of the server, in terms of speed

(service rate) and dependability (failure rate), suffices to achieve a desired average percentage of

waiting raw parts. Fig. 13 shows the corresponding curves, where E{#WAIT} is plotted vs. the

firing rates of transition serve and transition failure.
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Figure 13: Mean number of waiting raw parts (in rate and failure rate.

The state space of the DDSPN consists of 101 tangible markings. Depending on the deterministic

service rate 5,930 up to 125,153 tangible states have been generated. However, employing the

embedding technique for the stationary solution of this particular model leads to a state space

reduction of 86.4
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7 Conclusion

The results of [14],[5], and [8] have been combined introducing the DDSPN formalism where deter-

ministic and stochastic firing times of transitions can be mixed without structural restrictions while

providing integrated automatic conflict and confusion detection on a discrete time scale.

A new solution method combining [5] and [8] and a previously not available algorithm for

mapping a DDSPN onto its underlying stochastic process have been presented from which a direct

implementation can follow. Thus, a new practical formalism in the field of performance evaluation

has been enabled with new features based on discrete time as demonstrated for a typical queueing

application example.

Considerable state space reduction can be achieved for a given DDSPN model by carefully

choosing timing parameters and, more importantly, by means of embedding. Even so, the DDSPN

formalism still leads to a large state space due to the additional phase components in the state.
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